Cambridge International Examinations

Cambridge International Advanced Level

FURTHER MATHEMATICS
9231/21
Paper 2
May/June 2017
MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. $B 2 / 1 / 0$ means that the candidate can earn anything from 0 to 2 .

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable)/ Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

PUBLISHED

Question	Answer	Marks	Guidance
1	$0.08 \times(300-v)=1000 \times 0.02 \quad(\mathrm{AEF})$	M1 A1	Find eqn for exit speed v from e.g. change in momentum $=F t$ (if $300+v$ or equivalent, can allow M1 only)
	$v=300-250=50\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$	A1	
	Total:	3	
2	$\begin{array}{ll} \text { Take moments for rod about some point such as: } \\ A: \quad & R_{P} \times A P-k W \times 3 a \cos \theta=W \times(3 a / 2) \cos \theta \\ & {\left[R_{P} \times 3 a / 4-k W \times 9 a / 5=W \times 9 a / 10\right.} \\ & \text { so } \left.15 R_{P}-36 \mathrm{~kW}=18 \mathrm{~W}\right] \\ O: & F_{A} \times(5 a / 4)-k W \times(3 a \cos \theta-5 a / 4) \\ & =-W \times(5 a / 4-(3 a / 2) \cos \theta) \\ & {\left[F_{A} \times 5 a / 4-k W \times 11 a / 20=-W \times 7 a / 20\right.} \\ & \text { so } \left.25 F_{A}-11 \mathrm{~kW}=-7 \mathrm{~W}\right] \\ P: & R_{A} \times A P \sin \theta+F_{A} \times A P \cos \theta-k W \times(3 a-A P) \cos \theta \\ & =W \times(3 a / 2-A P) \cos \theta) \\ & {\left[R_{A} \times 3 a / 5+F_{A} \times 9 a / 20-k W \times 27 a / 20=W \times 9 a / 20 \text { so } 12 \quad R_{A}+\right.} \\ & \left.9 F_{A}-27 \mathrm{~kW}=9 W\right] \\ B: \quad & R_{P} \times(3 a-A P)-R_{A} \times 3 a \sin \theta-F_{A} \times 3 a \cos \theta \\ & =W \times(3 a / 2) \cos \theta \\ & {\left[R_{P} \times 9 a / 4-R_{A} \times 12 a / 5-F_{A} \times 9 a / 5=W \times 9 a / 10\right.} \\ & \text { so } \left.45 R_{P}-48 R_{A}-36 F_{A}=18 W\right] \\ C: & R_{P} \times(3 a / 2-A P)-R_{A} \times(3 a / 2) \sin \theta-F_{A} \times(3 a / 2) \cos \theta+k W \\ & \times(3 a / 2) \cos \theta=0 \\ & {\left[R_{P} \times 3 a / 4-R_{A} \times 6 a / 5-F_{A} \times 9 a / 10+k W \times 9 a / 10=0\right.} \\ & \text { so } \left.15 R_{P}-24 R_{A}-18 F_{A}+18 k W=0\right] \\ F: & R_{P} \cos \theta \times(3 a-A P) \cos \theta-R_{P} \sin \theta \times A P \sin \theta \\ & -F_{A} \times 3 a \cos \theta=W \times(3 a / 2) \cos \theta \\ & {\left[(3 / 5) R_{P} \times 27 a / 20-(4 / 5) R_{P} \times 3 a / 5\right.} \\ & -F_{A} \times 9 a / 5=W \times 9 a / 10 \\ & \text { so } \left.81 R_{P}-48 R_{P}-180 F_{A}=90 W\right] \end{array}$	M1 A1	F_{A} here denotes friction on rod measured in downward dirn; P denotes point of contact of rod and disc; θ denotes angle between rod and horizontal. $\begin{aligned} & {[A P=3 a / 4, \sin \theta=4 / 5, \cos \theta=3 / 5, \tan \theta=4 / 3,} \\ & 3 a-A P=9 a / 4,3 a / 2-A P=3 a / 4] \end{aligned}$ See note below on solving question without introducing R_{P} (C denotes mid-point of $A B$) (F is vertically below B, on $A O$ extended)

Question	Answer	Marks	Guidance
	Find two more indep. eqns, e.g. resolution of forces on rod: Horizontally: $\quad R_{A}=R_{P} \sin \theta\left[=4 R_{P} / 5\right]$ Vertically: $\quad F_{A}+(k+1) W=R_{P} \cos \theta\left[=3 R_{P} / 5\right]$ Along $A B: \quad R_{A} \cos \theta=F_{A} \sin \theta+(k+1) W \sin \theta$ Normal to $A B: \quad R_{P}=R_{A} \sin \theta+F_{A} \cos \theta+(k+1) W \cos \theta$	B1 B1	A second moment eqn. may be used instead of a resolution Count as 2 eqns if used with moments about P (so R_{P} absent)
	$F_{A}=+R_{A} / 8$ or $-R_{A} / 8$ as appropriate	B1	Relate F_{A} and R_{A} (may be implied; and must be consistent with friction taken down or up in above eqns)
	$[\sin \theta=4 / 5, \cos \theta=3 / 5, \tan \theta=4 / 3]$	M1	Eliminate θ from all reqd. independent eqns. for forces Find either value of k from reqd. independent eqns. for forces
	$\begin{aligned} & F_{A} \downarrow:\left[R_{P}=6 W, F_{A}=3 W / 5, R_{A}=24 W / 5\right], k=2 \\ & F_{A} \uparrow:\left[R_{P}=30 W / 17, F_{A}=3 W / 17, R_{A}=24 W / 17\right], k=4 / 17 \end{aligned}$	M1 A1	(or 0.235)
	Total:	8	

Question	Answer	Marks	Guidance
3(i)	$3 m v_{A}+m v_{B}=3 m u, v_{B}-v_{A}=e u \quad \quad(\mathrm{AEF})$	M1	Use momentum and Newton's law (M0 if inconsistent LHS signs; allow $3 v_{A}+v_{B}=3 u$)
	$v_{A}=1 / 4(3-e) u, v_{B}=3 / 4(1+e) u$	A1, A1	Combine to find velocities of A and B after colln. (signs must be consistent with chosen direction)
	Total:	3	
3(ii)	$v_{B}{ }^{\prime}=-3 / 4 v_{B}[=-(9 / 16)(1+e) u] \quad$ (AEF)	B1	Relate velocity v_{B}^{\prime} of B after colln. with wall to v_{B}
	$\left[3 m V_{A}+\right] m V_{B}=3 m v_{A}+m v_{B}^{\prime}\left[V_{B}=3(9-7 e) u / 16\right]$	M1	Use momentum (allow m omitted and $V_{A}=0$)
	$V_{B}\left[-V_{A}\right]=-e\left(v_{B}^{\prime}-v_{A}\right)\left[V_{B}=e(21+5 e) u / 16\right]$	M1	Use Newton's law
	EITHER: $\begin{align*} & {\left[4 V_{A}=\right](3-e) v_{A}+(1+e) v_{B}{ }^{\prime}=0} \\ & 1 / 4(3-e)^{2}-(9 / 16)(1+e)^{2}=0 \tag{AEF} \end{align*}$	(M1 A1)	Eliminate V_{B} with $V_{A}=0$ and substitute for v_{A} and $v_{B}{ }^{\prime}$
	$\begin{aligned} & \text { OR: } \\ & 3(9-7 e)=e(21+5 e) \end{aligned}$	(M1 A1)	
	$5 e^{2}+42 e-27=0, e=3 / 5$ or $0 \cdot 6$	M1 A1	Form and solve quadratic for e, rejecting root -9
	Total:	7	

Question	Answer	Marks	Guidance
4(i)	$\begin{aligned} & I_{\text {discs }}=1 / 2 m a^{2}+2 \times\left\{1 / 2 m a^{2}+m(4 a)^{2}\right\} \\ & {\left[=(1 / 2+2 \times\{33 / 2)\} m a^{2}=67 m a^{2} / 2\right]} \end{aligned}$	M1 A1	Find MI of discs about axis l
	$\begin{align*} & I_{A B} \text { or } I_{A C}=1 / 3(1 / 3 m) a^{2}+(1 / 3 m)(2 a)^{2} \tag{AEF}\\ & {\left[=13 m a^{2} / 9\right]} \end{align*}$	M1 A1	Find MI of e.g. rod joining one of A, B or A, C about axis l (M1 for finding MI of any of the 3 rods)
	$\begin{align*} & I_{B C}=1 / 3(1 / 3 m) a^{2}+(1 / 3 m)(2 a \sqrt{ } 3)^{2} \tag{AEF}\\ & {\left[=37 m a^{2} / 9\right]} \end{align*}$	A1	Find MI of rod joining B, C about axis l
	$I=(67 / 2+37 / 9+2 \times 13 / 9) m a^{2}=81 m a^{2} / 2$	A1	Combine to find MI of object about axis l
	Total:	6	
4(ii)	$h=4 a$	B1	Find or state vertical change h of centre of mass
	$1 / 2 I \omega^{2}=4 m g h, \omega^{2}=64 g / 81 a$	M1 A1 FT	Find angular velocity ω when B below A by energy (FT on I)
	$\omega=(8 / 9) \sqrt{ }(\mathrm{g} / a)$ or $0.889 \sqrt{ }(\mathrm{~g} / a)$ or $2.81 / \sqrt{ } a$	A1	(requires some simplification for this A1)
	Total:	4	
5(i)	$\begin{aligned} & 1 / 2 m v_{1}^{2}=1 / 2 m u^{2}+m g a \cos \alpha \\ & v_{1}^{2}=a g+2 a g \cos \alpha, v_{1}=\sqrt{ }(a g(1+2 \cos \alpha)) \mathrm{AG} \end{aligned}$	M1 A1	Verify v_{1} for string horizontal by consvn of energy (A0 if no m)
	Total:	2	

Question	Answer	Marks	Guidance
5(ii)	$\begin{aligned} & T_{A}+m g \cos \alpha=m(\sqrt{ } a g)^{2} / a, T_{A}=m g(1-\cos \alpha) \\ & 1 / 2 m v_{2}^{2}=1 / 2 m u^{2}+m g a \cos \alpha-m g 2 / 3 a \cos 60^{\circ} \end{aligned}$	M1 A1	Find tension T_{A} at A from $F=m a$ radially Find $v_{2}{ }^{2}$ at C by consvn. of energy ($\mathbf{A} \mathbf{0}$ if no m)
	or $1 / 2 m v_{1}^{2}-m g^{2 / 3} a \cos 60^{\circ}$	M1 A1	
	$v_{2}{ }^{2}=a g+2 a g \cos \alpha-2 / 3 a g=a g(1 / 3+2 \cos \alpha)$	A1	
	$\begin{aligned} & T_{C}+m g \cos 60^{\circ}=m v_{2}{ }^{2} / 2 / 3 a\left[=3 m v_{2}{ }^{2} / 2 a\right] \\ & {\left[T_{C}=3 m g \cos \alpha\right]} \end{aligned}$	M1 A1	Find tension T_{C} at C from $F=m a$ radially
	$m g(1-\cos \alpha)=3 m g(1 / 3+2 \cos \alpha) / 2-1 / 2 m g$	M1 A1	Find $\cos \alpha$ from $T_{A}=T_{C}$ and substituting for $v_{2}{ }^{2}$
	$1-\cos \alpha=3 \cos \alpha, \cos \alpha=1 / 4$	A1	
	Total:	10	

Question	Answer		Marks	Guidance
6 (i)	$\mathrm{P}(X \leq 4)=1-q^{4}$		M1	Find prob. of score of 6 on no more than 4 throws
	= 671/1296 or 0.518		A1	Set $q=5 / 6$ and evaluate
		Total:	2	
6 (ii)	$1-q^{N-1}>0.95$		M1	Formulate condition for $N\left(1-q^{N}\right.$ is M0)
	$(5 / 6)^{N-1}<0.05, N-1>\log 0.05 / \log 5 / 6$		M1	Set $q=5 / 6$, rearrange and take logs (any base) to give bound
	$N-1>16 \cdot 4[3], N_{\min }=18$		A1	Find $N_{\text {min }}$ $(N-1<16 \cdot 4$ or $N-1=16 \cdot 4$ earns M1 M1 A0)
		Total:	3	
7	$\bar{x}=7 \cdot 2$		B1	Find sample mean
	$\begin{aligned} & s^{2}=\left(542-72^{2} / 10\right) / 9 \\ & {\left[=118 / 45 \text { or } 2.622 \text { or } 1.619^{2}\right]} \end{aligned}$		M1	Estimate population variance (allow biased here: 2.36 or 1.536^{2})
	$\mathrm{H}_{0}: \mu=6 \cdot 2, \mathrm{H}_{1}: \mu>6 \cdot 2$	(AEF)	B1	State hypotheses (B0 for $\bar{x} \ldots$)
	$t_{9,0.95}=1.83[3]$		B1	State or use correct tabular t-value
	$t=(\bar{x}-6.2) /(s / \sqrt{ } 10)=1.95$ [Accept H_{1} :]		M1 A1	Find value of t (or can compare \bar{x} with $6.2+0.939=$ 7.14) Consistent conclusion
	Claim (of mean mass increased) is justified	(AEF)	B1 FT	(FT on both t-values)
		Total:	7	

Question	Answer		Marks	Guidance
8(i)	$\mathrm{F}(x)=\int \mathrm{f}(x) \mathrm{d} x=x^{2} / 8-x / 4[+c]$		M1	Find or state distribution function $\mathrm{F}(x)$ for $2 \leqslant x \leqslant 4$ using $\mathrm{F}(2)=0$ or $\mathrm{F}(4)=1$ to find c if necessary
	$=x^{2} / 8-x / 4$ or $\left\{(x-1)^{2}-1\right\} / 8$	(AEF)	A1	State $\mathrm{F}(x)$ for other values of x
	$\mathrm{F}(x)=0(x<2), \mathrm{F}(x)=1(x>4)$		A1	
		Total:	3	
8(ii)	EITHER:$\begin{aligned} & \mathrm{G}(y)=\mathrm{P}(Y<y)=\mathrm{P}\left((X-1)^{3}<y\right) \\ & =\mathrm{P}\left(X<1+y^{1 / 3}\right)=\mathrm{F}\left(1+y^{1 / 3}\right) \\ & =\left(1+y^{1 / 3}\right)^{2} / 8-\left(1+y^{1 / 3}\right) / 4 \text { or }\left(y^{2 / 3}-1\right) / 8 \end{aligned}$		(M1 A1)	Find or state $\mathrm{G}(y)$ for $2 \leqslant x \leqslant 4$ from $Y=(X-1)^{3}$ (allow $<$ or \leqslant throughout)
	OR: Use $x=1+y^{1 / 3}$ to find $\mathrm{f}(x)=1 / 4 y^{1 / 3}$ and $\mathrm{d} x / \mathrm{d} y=1 / 3 y^{-2 / 3}$		(M1 A1)	Find $\mathrm{f}(x)$ and $\mathrm{d} x / \mathrm{d} y$ for use in $\mathrm{g}(y)=\mathrm{f}(x) \times\|\mathrm{d} x / \mathrm{d} y\|$
	$\mathrm{g}(y)\left[=\mathrm{G}^{\prime}(y)\right]=(1 / 12) y^{-1 / 3}$ or $1 /\left(12 y^{1 / 3}\right)$		A1	Find $\mathrm{g}(\mathrm{y})$ in simplified form
	for $1 \leqslant y \leqslant 27[\mathrm{~g}(y)=0$ otherwise]		A1	State corresponding range of y for $\mathrm{G}(y)$ or $\mathrm{g}(y)$
		Total:	4	
8(iii)	$\left(m^{2 / 3}-1\right) / 8=1 / 2$		M1	Find median value m of Y from $\mathrm{G}(m)=1 / 2$
	$m^{2 / 3}=5, m=\sqrt{ } 125$ or $5 \sqrt{ } 5$ or $11 \cdot 2$		M1 A1	
		Total:	3	

PUBLISHED

Question	Answer		Marks	Guidance
9	$\mathrm{H}_{0}: \mu_{X}=\mu_{Y}, \mathrm{H}_{1}: \mu_{X} \neq \mu_{Y}$	(AEF)	B1	State hypotheses ($\mathbf{B} \mathbf{0}$ for $\bar{x} \ldots$)
	$x=13.4 / 8$ or $1.67[5], \bar{y}=2.02 \quad$ (all to 3 s.f.)		B1	Find sample means (values to 3 s.f. throughout)
	$\begin{aligned} s_{X}^{2} & =\left(24 \cdot 7-13 \cdot 4^{2} / 8\right) / 7 \\ & =451 / 1400 \text { or } 0 \cdot 3221 \text { or } 0 \cdot 5678^{2} \text { and } \\ s_{Y}^{2} & =\left(44 \cdot 6-20 \cdot 2^{2} / 10\right) / 9 \\ & =949 / 2250 \text { or } 0 \cdot 4218 \text { or } 0 \cdot 6494^{2} \end{aligned}$		M1	Estimate or imply popln. variances (allow biased here: 0.2819 or 0.5309^{2}) (allow biased here: 0.3796 or 0.6161^{2})
	$\begin{aligned} & s^{2}=\left(7 s_{X}^{2}+9 s_{Y}^{2}\right) / 16 \\ & \text { or }\left(24 \cdot 7-13 \cdot 4^{2} / 8+44 \cdot 6-20 \cdot 2^{2} / 10\right) / 16 \end{aligned}$	(AEF)	M1 A1	Estimate (pooled) common variance (note $s_{X}{ }^{2}$ and $s_{Y}{ }^{2}$ not needed explicitly)
	$=6051 / 16000$ or 0.3782 or 0.6150^{2}		A1	
	$t_{16,0.95}=1.746$		*B1	State or use correct tabular t value
	$[-] t=(\bar{y}-\bar{x}) / s \sqrt{ }(1 / 8+1 / 10)=1 \cdot 18$		M1 A1	Find value of t (or can compare $\bar{y}-\bar{x}=0.345$ with 0.509)
	$t<1.75$ so mean masses are the same	(AEF)	DB1 FT	Correct conclusion (FT on t, dep *B1)
	$\begin{aligned} & \text { SR: } Z=(\bar{y}-\bar{x}) / \sqrt{ }\left(s_{X}^{2} / 8+s_{Y}^{2} / 10\right) \\ & =0.345 / \sqrt{ }(0.078)=1.20 \end{aligned}$		(B1)	SR: Implicitly taking s_{X}^{2}, s_{Y}^{2} as unequal popln. variances (may also earn first B1 B1 M1)
	$Z<1.645$ so mean masses are the same	(AEF)	(B1FT)	Comparison with $Z_{0.95}$ and conclusion (FT on Z) (can earn at most 5/10)
		Total:	10	

PUBLISHED

Question	Answer	Marks	Guidance
10(i)	$\begin{aligned} & \sum x=20, \Sigma y=30, \Sigma x y=111, \Sigma x^{2}=110, \Sigma y^{2}=190 \\ & S_{x y}=111-20 \times 30 / 5=-9 \text { or }-1 \cdot 8 \\ & S_{x x}=110-20^{2} / 5=30 \text { or } 6 \\ & {\left[S_{y y}=190-30^{2} / 5=10 \text { or } 2\right]} \\ & b=S_{x y} / S_{x x}=-9 / 30=-3 / 10 \text { or }-0 \cdot 3 \end{aligned}$	M1 A1	Find reqd. values
	$(y-6)=b(x-4), y=-0 \cdot 3 x+7 \cdot 2$	M1 A1	Find gradient b in $y-\bar{y}=b(x-\bar{x})$ and hence eqn. of regression line (may be implied by writing $y=a+b x$ and finding a, b)
	Total:	4	
10(ii)	$r=S_{x y} / \sqrt{ }\left(S_{x x} S_{y y}\right)=-9 / \sqrt{ }(30 \times 10)$	M1 A1	Find correlation coefficient r
	$=-0.520$	*A1	
	Total:	3	
10(iii)	$\mathrm{H}_{0}: \rho=0, \mathrm{H}_{1}: \rho \neq 0$	B1	State both hypotheses (B0 for $r \ldots$)
	$r_{5,10 \%}=0.805$	*B1	State or use correct tabular two-tail r-value
	Accept H_{0} if $\|r\|<$ tab. value (AEF)	M1	State or imply valid method for conclusion
	No [non-zero] correlation (AEF)	DA1	Correct conclusion (dep *A1, *B1)
	Total:	4	

Question	Answer	Marks	Guidance
11(a)(i)	$T=3 m g \sin \alpha \quad[=2 m g]$	B1	Find T by resolving forces along plane on P
	$T=k m g(5 a / 4-a) / a \quad[=1 / 4 \mathrm{kmg}]$	B1	Find T using Hooke's Law
	$k=8$	B1	Combine using $\sin \alpha=2 / 3$ to find k
	Total:	3	
11(a)(ii)	EITHER: $\pm 2 m \mathrm{~d}^{2} O Q / \mathrm{d} t^{2}=2 m g \sin \alpha-k m g(O Q-a) / a$	(M1 A1	Apply Newton's law at general point (e.g. below E)
	$\mathrm{d}^{2} O Q / \mathrm{d} t^{2}=(4 g / a)(7 a / 6-O Q)$	A1	Substitute values of k and $\sin \alpha$
	$\mathrm{d}^{2} x / \mathrm{d} t^{2}=-(4 g / a) x$ where $x=O Q-7 a / 6$	A1)	Derive standard SHM form (requires minus sign)
	OR: $2 m g \sin \alpha=k m g(e-a) / a, e=7 a / 6$	(M1	Find new equilibrium distance e from O
	$\pm 2 m \mathrm{~d}^{2} x / \mathrm{d} t^{2}=2 m g \sin \alpha-k m g(e+x-a) / a$	M1 A1	Apply Newton's law at general point (e.g. below E)
	$\mathrm{d}^{2} x / \mathrm{d} t^{2}=-(4 g / a) x$	A1)	Derive standard SHM form (requires minus sign)
	Centre is $7 a / 6$ (or $1.17 a)$ from O	B1	State centre of motion
	Period is $\pi \sqrt{ }(a / g)$ or $0.993 \sqrt{ } a$	B1	State period in simplified form, allowing $g=10$
	Total:	6	
11(a)(iii)	$x_{0}=5 a / 4-e=a / 12$	B1	Find amplitude x_{0} of motion
	$T_{\text {min }}=k m g\left(5 a / 4-2 x_{0}-a\right) / a=2 m g / 3$	M1 A1	Find least tension
	$\left(\mathrm{d}^{2} x / \mathrm{d} t^{2}\right)_{\text {max }}=[\pm](4 g / a) x_{0}=[\pm]^{1 / 3} \mathrm{~g}$	M1 A1	Find maximum acceleration (accepting either sign)
	Total:	5	

PUBLISHED

